Periods of Orbits modulo Primes

نویسندگان

  • AMIR AKBARY
  • DRAGOS GHIOCA
چکیده

Let S be a monoid of endomorphisms of a quasiprojective variety V defined over a global field K. We prove a lower bound for the size of the reduction modulo places of K of the orbit of any point α ∈ V (K) under the action of the endomorphisms from S. We also prove a similar result in the context of Drinfeld modules. Our results may be considered as dynamical variants of Artin’s primitive root conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Index divisibility in dynamical sequences and cyclic orbits modulo p

Let φ(x) = x + c be an integral polynomial of degree at least 2, and consider the sequence (φ(0))n=0, which is the orbit of 0 under iteration by φ. Let Dd,c denote the set of positive integers n for which n | φ(0). We give a characterization of Dd,c in terms of a directed graph and describe a number of its properties, including its cardinality and the primes contained therein. In particular, we...

متن کامل

Variation of periods modulo p in arithmetic dynamics

Let φ : V → V be a self-morphism of a quasiprojective variety defined over a number field K and let P ∈ V (K) be a point with infinite orbit under iteration of φ. For each prime p of good reduction, let mp(φ, P ) be the size of the φ-orbit of the reduction of P modulo p. Fix any ǫ > 0. We show that for almost all primes p in the sense of analytic density, the orbit size mp(φ, P ) is larger than...

متن کامل

Aurifeuillian factorizations and the period of the Bell numbers modulo a prime

We show that the minimum period modulo p of the Bell exponential integers is (pp−1)/(p−1) for all primes p < 102 and several larger p. Our proof of this result requires the prime factorization of these periods. For some primes p the factoring is aided by an algebraic formula called an Aurifeuillian factorization. We explain how the coefficients of the factors in these formulas may be computed.

متن کامل

Lecture # 2: Dirichlet L-functions, Dirichlet Characters and primes in arithmetic progressions

Dirichlet considered a question very similar to the one which inspired Euler’s introduction of the ζfunction: namely, how the primes are distributed modulo m. The simplest question of this type is whether are there infinitely many primes congruent to a modulo m. Obviously there can only be infinitely many primes of this form if a and m are relatively prime. Unfortunately, this problem turned ou...

متن کامل

Lower Bounds on the Period of Some Pseudorandom Number Generators

We are interested in obtaining lower bounds on the periods of two standard pseudorandom number generators from number theory—the linear congruential generator, first introduced by D. H. Lehmer, and the so called power generator. For the former, given integers e, b, n (with e, n > 1) and a seed u = u0, we compute the sequence ui+1 = eui + b (mod n). For the power generator, given integers e, n >...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009